2,3-Dioxo-2,3-dihydrofurane, 2¹⁾

B 2289

Vielseitige Synthese von 2,3-Dioxo-2,3-dihydrofuranen und Alkylidenbutenoliden. – Kristall- und Molekülstruktur von 5-(4-Chlorphenyl)-4-methoxycarbonyl-2,3-dioxo-2,3-dihydrofuran

Rolf W. Saalfrank *a, Thomas Lutza, Bernd Hörnera, Jürgen Gündela, Karl Petersb und Hans Georg von Schneringb

Institut für Organische Chemie der Universität Erlangen-Nürnberg^a, Henkestraße 42, W-8520 Erlangen

Max-Planck-Institut für Festkörperforschung^b, Heisenbergstraße 1, W-7000 Stuttgart 80

Eingegangen am 8. März 1991

Key Words: 2,3-Dihydrofuran-2,3-diones / Alkylidenebutenolides

2,3-Dioxo-2,3-dihydrofurans, 2¹⁾. — Versatile Synthesis of 2,3-Dioxo-2,3-dihydrofurans and Alkylidenebutenolides. — Crystal and Molecular Structure of 5-(4-Chlorophenyl)-4-methoxycarbonyl-2,3-dioxo-2,3-dihydrofuran

Reaction of the 1,3-dicarbonyl compounds 5a - f, containing at least one α -hydrogen atom in \mathbb{R}^1 and/or \mathbb{R}^2 , with oxalyl halides 2 in the presence of magnesium chloride yields regioand on the whole stereospecifically the previously unknown (Z)-alkylidenebutenolides 7a - f. Similarly, the 4-alkoxycarbonyl-5-aryl-2,3-dioxo-2,3-dihydrofurans 6g - p are obtained (X-ray structure of **6**i) starting from 3-aryl-3-oxo-propanoates 5g - p. Correspondingly, malondiamides **8a, b, e, f** react with oxalyl chloride (**2a**) to give the 2,3-dioxo-2,3-dihydrofurans **9a, b** and **11a, b**. Having mono(alkyl/aryl)amino substituents in position 5, compounds **11a, b** spontaneously tautomerize to give imino enols **12a, b**. Hydrochlorides **10a, b** are formed on treatment of malondiamides **8c, d** with oxalyl chloride (**2a**). In

Bei der Umsetzung von Malonsäure-diethylester (1) mit Methylmagnesiumiodid oder dem System Methyllithium/Metalldichlorid und Oxalylchlorid (2a) bei -78 °C in Tetrahydrofuran und anschließendem Aufarbeiten mit wäßriger Ammoniumchlorid-Lösung erhielten wir tetranukleare Metallchelatkomplexe 3²). Schlüsselschritt dieser Reaktion ist die Verknüpfung von zwei Malonester-Monoanionen mit Oxalylchlorid (2a) zu 2,3-Dihydroxy-1,3-buta-

the case of the β -oxocarboxamides 13/14 the substituents at the amide nitrogen atom control the regiochemistry. Starting from 13 (R² = Ph) and oxalyl chloride (2a), 4-acetyl-5-diphenylamino-2,3-dioxo-2,3-dihydrofuran (15) is formed regiospecifically, whereas under the same conditions 13/14 (R² = CH₂Ph) afford 4-dibenzylcarbamoyl-5-methyl/phenyl-2,3-dioxo-2,3-dihydrofurans 16/17. Furanone 16 spontaneously enolizes to give 4-dibenzylcarbamoyl-3-hydroxy-5-methylene-2(5H)-furanone (18). Similarly, the N-monosubstituted β -oxocarboxamides 19a, b readily react regiospecifically with oxalyl chloride (2a) to give via the 2,3-dioxo-2,3-dihydrofurans 20a, b the imino enols 21a, b.

dien-1,1,4,4-tetracarbonsäure-tetraethylester, dessen anschließende zweifache Deprotonierung den doppelt zweizähnigen Brückenliganden 4 liefert.

Im Gegensatz dazu entstehen unter den oben genannten Bedingungen aus 1,3-Diketonen 5 (\mathbb{R}^1 , \mathbb{R}^2 = Alkyl, Aryl) durch spontane Selbstorganisation keine adamantanoiden Chelatkomplexe vom Typ 3.

Bekanntlich reagiert 1,3-Diphenyl-1,3-propandion (5, $R^1 = R^2 = Ph$) mit 2a glatt zu 4-Benzoyl-2,3-dioxo-5-phenyl-2,3-dihydrofuran (6, $R^1 = R^2 = Ph$)³. Ziegler et al.³) berichten allerdings, daß ihre Versuche, aus Acetylaceton (5, $R^1 = R^2 = CH_3$), Benzoylaceton (5, $R^1 = CH_3$, $R^2 = Ph$) etc. mit 2a analog gebaute 2,3-Furandione 6 herzustellen, erfolglos waren.

Wie wir bereits früher zeigen konnten¹, gelingt es jedoch, in Gegenwart katalytischer Mengen an Magnesiumchlorid⁴) aus 1,3-Diketonen 5 ($\mathbb{R}^1/\mathbb{R}^2$ = Alkyl, Aryl) und 2a regiospezifisch ($\mathbb{R}^1 \neq \mathbb{R}^2$) 4-Acyl-5-alkyl/aryl-2,3-dioxo-2,3-dihydrofurane 6 darzustellen, die gegebenenfalls stereospezifisch zu den entsprechenden (Z)-Enolen 7 ($\mathbb{R}^3 = H, \mathbb{R}^4 = Alkyl$) tautomerisieren. Die Gleichgewichtslage 6 \rightleftharpoons 7 ist lösungsmittel-, temperatur- und substituentenabhängig. Im Falle der Magnesiumchlorid-induzierten Umsetzung von 1,3-Di-

Chem. Ber. 124 (1991) 2289-2295 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1991 0009-2940/91/1010-2289 \$ 3.50+.25/0

ketonen 5 ($\mathbb{R}^1/\mathbb{R}^2$ = Alkyl, Aryl) mit Oxalylchlorid (**2a**) ist offensichtlich ein *intramolekularer Ringschluß* gegenüber einer *intermolekularen Kupplung*, wie sie bei Malonsäure-diethylester (**1**) beobachtet wurde, favorisiert^{1,2}.

Zu dieser Thematik haben wir nunmehr weitere Untersuchungen durchgeführt. Ausgehend von 5a-e und Oxalylhalogenid (2) erhielten wir durch Aktivierung mit Magnesiumchlorid zusätzlich eine Reihe neuer 2,3-Dioxo-2,3-dihydrofurane 6a-e. Aufgrund der spektroskopischen Befunde (Exp. Teil) verläuft bei 5c - e die intramolekulare Cyclisierung streng regiospezifisch. Die sich anschließende Tautomerisierung erfolgt in der Regel stereospezifisch. Das Tautomeriegleichgewicht $6a, c-e \rightleftharpoons 7a, c-e$ liegt in Chloroform praktisch ausschließlich auf der Seite der (Z)-Isomere $7a, c-e (R^3 = H, R^4 = Alkyl)$. Nur im Falle von 7a, d entstehen neben den (Z)-Isomeren 7a,d auch die entsprechenden (E)-Isomere 7a, d zu ca. 1 bzw. 13%. Ausgehend von 5-Methyl-3-oxohexansäure-ethylester (5f) und Oxalylchlorid (2a) erhielten wir in Gegenwart von Magnesiumchlorid ebenfalls regio- und stereospezifisch das (Z)-Alkylidenbutenolid 7f. Die für die Alkylidenbutenolide 7a, c-f vorgeschlagene (Z)-Konfiguration wird durch die aus einem NOE-Differenzspektrum (Deuteriochloroform, 400 MHz) von (Z)-3-Hydroxy-4-methoxycarbonyl-5-(2-methylpropyliden)- 2(5*H*)-furanon (7**f**) gewonnenen Kenntnisse gestützt. Sättigung des Dubletts bei $\delta = 5.63$ (=CH) von 7**f** resultiert in einem positiven NOE bei $\delta = 4.00$ (OCH₃).

Setzt man anstelle der 1,3-Dicarbonyl-Verbindungen $5\mathbf{a}-\mathbf{f}$ 3-Aryl-3-oxopropansäureester $5\mathbf{g}-\mathbf{p}$ mit Oxalylchlorid (**2a**) und Magnesiumchlorid um, dann entstehen regiospezifisch die entsprechenden 4-Alkoxycarbonyl-5-aryl-2,3-dioxo-2,3-dihydrofurane $6\mathbf{g}-\mathbf{p}$.

Bisher haben wir keine schlüssige Erklärung dafür, weshalb bei der Reaktion von Malonsäure-diethylester (1) mit Oxalylchlorid (2a) vierkernige Chelatkomplexe 3 entstehen, während die 1,3-Dicarbonyl-Verbindungen 5 ($\mathbb{R}^1 = Alkyl$, OR; $\mathbb{R}^2 = Alkyl$, Aryl) mit 2 ausnahmslos die entsprechenden 2,3-Dioxo-2,3-dihydrofurane 6 bilden.

Um über mehr experimentelles Material zu verfügen, haben wir daher zunächst Malonsäurediamide 8 mit Oxalylchlorid (2a) umgesetzt. Anstelle der erwarteten vierkernigen Chelatkomplexe²⁾ vom Typ 3 erhielten wir 2,3-Dioxo-2,3dihydrofurane 9 und 11. Die in 5-Position Mono(alkyl/aryl)amino-substituierten 2,3-Dioxo-2,3-dihydrofurane 11 liegen praktisch vollkommen in Form der entsprechenden Iminoenole 12 vor.

Im Falle der Umsetzung von **8c,d** mit Oxalylchlorid (**2a**) handelt es sich um einen Sonderfall. Bei diesen beiden Beispielen binden die primär entstehenden 2,3-Furandione aufgrund einer stark basischen Amin-Funktion [NEt₂/N(CH-Me₂)₂] in 5-Stellung den während der Reaktion auftretenden Chlorwasserstoff, und man isoliert unter diesen Voraussetzungen die entsprechenden Hydrochloride 10a,b. (Von 10b liegt eine Röntgenstruktur vor, die in anderem Zusammenhang ausführlich diskutiert werden wird.)

Im Falle der β-Oxosäureamide 13/14 ist bemerkenswert, daß bei deren Umsetzung mit Oxalylchlorid (2a) die Substituenten am Amid-Stickstoff-Atom über die Regiochemie der entstehenden 2,3-Dioxo-2,3-dihydrofurane 15 bzw. 16/ 17 entscheiden. Ausgehend von 13 ($R^2 = Ph$) entsteht regiospezifisch 4-Acetyl-5-diphenylamino-2,3-dioxo-2,3-dihydrofuran (15), während die β -Oxosäureamide 13/14 (\mathbb{R}^2 = CH₂Ph), unter sonst gleichen Bedingungen (wiederum regiospezifisch) 4-Dibenzylcarbamoyl-5-methyl/phenyl-2,3-dioxo-2,3-dihydrofuran 16/17 bilden. Das Furanon 16 enolisiert spontan zu 4-Dibenzylcarbamoyl-3-hydroxy-5-methylen-2(5H)-furanon (18). Aufgrund der Tatsache, daß im ¹H-NMR-Spektrum von 17 selbst über 100°C für die N(CH2-Ph)₂-Gruppe noch zwei getrennte, scharfe Signale auftreten, handelt es sich bei dieser Verbindung um ein Amid, wodurch eine Enamin-Struktur vom Typ 15 ausgeschlossen wird.

Auch die Mono(alkyl/aryl)amino-substituierten β -Oxosäureamide 19 reagieren glatt und regiospezifisch mit Oxalylchlorid (2a). In diesem Fall enolisieren aber die intermediär auftretenden 2,3-Dioxo-2,3-dihydrofurane 20 spontan zu den Imino-enolen 21.

Es fällt auf, daß nur die Umsetzungen der 1,3-Dicarbonyl-Verbindungen 5 mit Oxalylhalogeniden 2 durch Magnesiumchlorid aktiviert werden müssen, während die Malonsäurediamide 8 sowie die β -Oxosäureamide 13/14 bzw. 19 auch ohne Magnesiumchlorid die Produkte 9-12, 15-18 bzw. 20, 21 bilden.

Gegenüber diesem bequemen Verfahren zur Darstellung von 6g-p aus 5g-p und 2a ist die Variante über die Silylenolether 22 nicht konkurrenzfähig.

Das neue, einfache Verfahren stellt eine erhebliche Erweiterung der Synthesemöglichkeiten von 2,3-Dioxo-2,3-dihydrofuranen^{3,5)} dar.

Kristall- und Molekülstruktur von 6i

Die Konstitution der 2,3-Dioxo-2,3-dihydrofurane 6g-pgeht nicht eindeutig aus den IR- und NMR-Spektren hervor. Die erhaltenen Daten wären auch mit den Strukturisomeren vereinbar, die durch Austausch von R¹ gegen R² entstehen. Deshalb haben wir von 5-(4-Chlorphenyl)-4-methoxycarbonyl-2,3-dioxo-2,3-dihydrofuran (6i) eine Röntgenstrukturanalyse angefertigt. Einzelheiten der Strukturbestimmung sind Abb. 1 sowie dem Exp. Teil zu entnehmen⁶.

Abb. 1. Struktur von **6i** mit der Benennung der Atome analog Tab. 2 (Sauerstoff-Atome schraffiert, Chlor-Atom punktiert); ausgewählte Bindungsabstände [pm]: C(1)-C(5) 136.8(6), O(2)-C(3) 139.5(5), C(3)-C(4) 152.4(6), C(4)-C(5) 146.0(5), C(1)-O(2) 139.8(5), C(3)-O(3) 118.2(5), C(4)-O(4) 121.5(5); ausgewählte Bindungswinkel [°]: O(2)-C(1)-C(5) 112.7(3), O(2)-C(3)-O(3) 121.7(4), C(3)-C(4)-C(5) 105.3(4), C(1)-C(5)-C(4) 107.0(3), C(1)-O(2)-C(3) 108.7(3), O(2)-C(3)-C(4) 106.3(3), C(3)-C(4)-O(4) 121.5(4)

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung.

Experimenteller Teil

Schmelzpunkte (unkorrigiert): Heizmikroskop (Monoskop MS Fa. Bock, Frankfurt/Main). – IR: IR-5 und Acculab 3 (Fa. Beckman). – ¹H-NMR: JNM-PX-60, C-60, JNM-PS-100 sowie JNM- GX-400-FT (TMS int.) (Fa. Jeol). - ¹³C-NMR: JNM-GC-400-FT (100.5 MHz, TMS int.) (Fa. Jeol); Protonen-breitbandentkoppelt, die Zuordnung der Signale erfolgte über DEPT-Spektren. - MS: Varian-MAT CH-48; Direkteinlaß, 70 eV. - Die Elementaranalysen führte Frau *R. Schmidt* mit einem CHN-Mikroautomat der Firma Heraeus aus.

A) 4-Alkoxycarbonyl-5-aryl-2,3-dioxo-2,3-dihydrofurane 6. – Allgemeine Arbeitsweise. – Variante 1: Unter Stickstoff tropft man zu einer Lösung von 30 mmol 5g-p in 50 ml THF bei –78 °C unter Rühren eine Lösung aus 18.5 ml (30 mmol) *n*-Butyllithium (1.6 N in *n*-Hexan) in 15 ml THF, rührt 1 h, gibt bei –78 °C 5.08 ml (40 mmol) Chlortrimethylsilan zu, rührt 30 min, erwärmt innerhalb 16 h auf 20 °C, tropft eine Lösung von 2.62 ml (30 mmol) 2a in 20 ml THF zu, rührt 3 h, entfernt das Lösungsmittel im Vakuum und nimmt den Rückstand mit 100 ml Diethylether auf. Man filtriert, entfernt das Lösungsmittel im Rotationsverdampfer und reinigt den Rückstand durch Kristallisation (weitere Einzelheiten siehc konkrete Beispielc).

Variante 2: Zu einer Lösung von 15 mmol 5g-p in 50 ml Diethylether gibt man 1.00 g (10.5 mmol) Magnesiumchlorid, tropft eine Lösung von 1.31 ml (15 mmol) 2a in 10 ml Diethylether zu, rührt 2 h bei 20°C, filtriert, entfernt das Lösungsmittel im Rotationsverdampfer und reinigt den Rückstand durch Kristallisation (weitere Einzelheiten siehe konkrete Beispiele).

4-Methoxycarbonyl-5-phenyl-2,3-dioxo-2,3-dihydrofuran (6g): Ausb. 2.61 g (75%), hellgelbe Nadeln, Schmp. 90°C [aus Diethylether/n-Hexan/Chloroform (3:2:1)]. – IR (KBr): $\tilde{v} = 1825 \text{ cm}^{-1}$, 1720, 1670 (C=O); 1585 (C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.89$ (s, 3H, OCH₃); 7.57, 7.74 (t, J = 7 Hz, 3H, Phenyl-H); 8.12 (d, J = 7 Hz, 2H, Phenyl-H). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 52.67$ (OCH₃); 109.48, 152.26 (=C); 125.62, 128.93, 130.46, 136.09 (Phenyl-C); 161.21, 174.58, 180.37 (C=O). – MS: m/z (%) = 232 (10) [M⁺], 204 (45) [M⁺ – CO].

C₁₂H₈O₅ (232.1) Ber. C 62.04 H 3.45 Gef. C 61.99 H 3.50

4-Methoxycarbonyl-5-(4-methoxyphenyl)-2,3-dioxo-2,3-dihydrofuran (6h): Ausb. 3.18 g (81%), gelbe Kristallplättchen, Schmp. 115°C [aus Diethylether/n-Hexan (4:1)]. – IR (KBr): $\tilde{v} =$ 1840 cm⁻¹, 1740, 1695 (C=O); 1605 (C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta =$ 3.91, 3.96 (s, 3H, OCH₃); 7.05, 8.28 (d, J =9 Hz, 2H, Phenyl-H). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta =$ 55.45, 55.90 (OCH₃); 107.69, 114.75, 117.60, 133.88, 153.17, 161.87 (=C, Phenyl-C); 166.65, 174.13, 179.23 (C=O). – MS: m/z (%) = 262 (6) [M⁺], 234 (29) [M⁺ – CO].

C₁₃H₁₀O₆ (262.2) Ber. C 59.50 H 3.84 Gef. C 59.40 H 3.95

5-(4-Chlorphenyl)-4-methoxycarbonyl-2,3-dioxo-2,3-dihydrofuran (6i): Ausb. 3.23 g (81%), gelbe Prismen, Schmp. 105 °C [aus Diethylether/Chloroform (3:1)]. – IR (KBr): $\tilde{v} = 1770 \text{ cm}^{-1}$, 1730, 1680 (C=O); 1590 (C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta =$ 3.91 (s, 3H, OCH₃); 7.56, 8.14 (d, J = 9 Hz, 2H, Phenyl-H). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 52.77$ (OCH₃); 109.56, 124.04, 129.43, 131.87, 142.91, 151.94 (=C, Phenyl-C); 161.05, 174.36, 179.25 (C=O). – MS: m/z (%) = 266 (4) [M⁺], 238 (17) [M⁺ – CO].

C₁₂H₇ClO₅ (266.1) Ber. C 54.11 H 2.65 Gef. C 53.98 H 2.57

Kristallstrukturanalyse von 6i: Von einem gelben, transparenten Kristall $(0.3 \times 0.3 \times 0.1 \text{ mm})$ wurden die Zellparameter auf der Basis von 22 Reflexen und die Intensitäten von 2883 Reflexen bestimmt. Die Auswertung erfolgte mit einer Rechenanlage Micro VAX II und dem Programmsystem SHELXTL PLUS. Die Struktur wurde mit Hilfe Direkter Methoden gelöst. Die Verfeinerung der Parameter mit der Methode der kleinsten Quadrate führte bei anisotroper Beschreibung zu den angegebenen *R*-Werten. Die Lagen der Wasserstoff-Atome wurden geometrisch berechnet und mit isotroper Beschreibung bei den Verfeinerungen berücksichtigt. Die kristallographischen Daten sind in Tab. 1, die Atomparameter in Tab. 2 zusammengestellt. Abb. 1 zeigt das Molekül **6i** mit der Benennung der Atome.

Гаb.	1.	Kristallo	graphische	Daten	von	6i
						_

Summenformel: C₁₂H₇ClO₅; Molmasse: 266.64. -a = 1121.5(2), b = 1075.5(2), c = 953.8(2) pm; $\beta = 100.76(2)^{\circ}$; $V = 1130.1(4) \cdot 10^{6}$ pm³; Z = 4; d(ber.) = 1.576 g \cdot cm⁻³. - Kristallsystem: monoklin; Raumgruppe: P2₁/n. Diffraktometer: SIEMENS R3m/V. - Strahlung: Mo-K_a; Monochromator; Graphit. - Meßmethode: Wyckoff-Scan; Meßbereich [Θ]: 1.75–27.5°. - Ausschnitt des reziproken Gitters: h = 0 bis 14, k = 0 bis 13, l = -12 bis 12. - Anzahl der gemessenen Intensitäten: 2883; Anzahl der unabhängigen Reflexe: 2613; Anzahl der Reflexe mit $F > 3\sigma(F)$: 1479. - Linearer Absorptionskoeffizient: 0.34 mm⁻¹. - Absorptionskorrektur: Ψ -Scan. - Verhältnis von Parametern/F: 9.07. - R = 0.072; R_w = 0.052, w = $1/\sigma^2(F)$.

Tab. 2. Ortsparameter (× 10⁴) und äquivalente isotrope Temperaturkoeffizienten U_{eq} (× 10⁻¹) [pm²] von **6i** ($U_{eq} = 1/3$ $\sum_{i} \sum_{j} U_{ij} \alpha_{i}^{*} \alpha_{j}^{*} \alpha_{i} \alpha_{j}$)

	x	у	z	U(eq)
C1	2314(1)	6893(1)	91(1)	75(1)
C(1)	-810(4)	4150(4)	3463(4)	44(1)
0(2)	-164(2)	3135(3)	4135(3)	53(1)
C(3)	-896(4)	2510(4)	4936(4)	52(2)
0(3)	-553(3)	1613(3)	5610(3)	68(1)
C(4)	-2078(4)	3242(4)	4762(4)	50(2)
0(4)	-2877(3)	2956(3)	5403(3)	67(1)
C(5)	-1950(3)	4245(3)	3770(4)	43(1)
C(6)	-2928(4)	5108(4)	3165(4)	50(2)
0(6)	-2860(3)	5972(3)	2390(3)	76(1)
0(7)	-3950(3)	4807(3)	3596(3)	64(1)
C(7)	-5001(4)	5568(4)	3071(5)	70(2)
C(11)	-77(3)	4841(4)	2609(4)	44(1)
C(12)	-321(4)	6086(4)	2219(4)	54(2)
C(13)	413(4)	6713(4)	1444(4)	55(2)
C(14)	1389(4)	6108(4)	1066(4)	53(2)
C(15)	1654(4)	4890(4)	1441(4)	57(2)
C(16)	929(4)	4256(4)	2228(4)	56(2)

4-Methoxycarbonyl-5-(2-thienyl)-2,3-dioxo-2,3-dihydrofuran (6j): Ausb. 2.43 g (68%), gelbe Kristallplättchen, Schmp. 157°C (aus Diethylether). – IR (KBr): $\tilde{v} = 1830 \text{ cm}^{-1}$, 1720, 1680 (C=O); 1550 (C=C). – ¹H-NMR (400 MHz, [D₆]Aceton/[D₈]THF): $\delta = 3.86$ (s, 3H, OCH₃); 7.42 (t, J = 4 Hz, 1H, =CH); 8.33, 8.66 (d, J =5 Hz, 1H, =CH). – ¹³C-NMR (100.5 MHz, [D₆]Aceton/[D₈]-THF): $\delta = 52.16$ (OCH₃); 106.32, 129.88 (=C); 130.24, 140.00, 142.23 (=CH); 153.86, 162.77, 174.10 (C=O, =C-O, zwei Signale fallen zufällig zusammen). – MS: m/z (%) = 238 (20) [M⁺], 210 (20) [M⁺ - CO].

 $C_{10}H_6O_5S$ (238.2) Ber. C 50.37 H 2.51 Gef. C 50.44 H 2.56

4-Methoxycarbonyl-5-(2-methoxyphenyl)-2,3-dioxo-2,3-dihydrofuran (6k): Ausb. 3.06 g (78%), gelbes Pulver, Schmp. 128 °C (aus Diethylether). – IR (KBr): $\tilde{v} = 1810 \text{ cm}^{-1}$, 1710, 1695 (C=O); 1580 (C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.80$, 3.88 (s, 3H, OCH₃); 7.06, 7.74 (d, J = 8 Hz, 1H, Phenyl-H); 7.14, 7.69 (t, 7 Hz, 1H, Phenyl-H). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 52.12$, 55.55 (OCH₃); 111.71, 112.52, 115.22, 120.88, 129.68, 137.08 (=C, Phenyl-C); 152.88, 159.60, 160.98, 174.55, 177.18 (C=O, =C-O). - MS: m/z (%) = 262 (3) [M⁺], 234 (24) [M⁺ - CO].

 $C_{13}H_{10}O_6$ (262.2) Ber. C 59.50 H 3.84 Gef. C 59.01 H 4.00

4-Ethoxycarbonyl-5-phenyl-2,3-dioxo-2,3-dihydrofuran (61): Ausb. 3.14 g (85%), gelbe Kristalle, Schmp. 112 °C [aus Diethylether/n-Hexan (3:1)]. – IR (KBr): $\tilde{v} = 1820 \text{ cm}^{-1}$, 1725, 1670 (C = O); 1590 (C = C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.35$ (t, J =7 Hz, 3H, CH₃); 4.37 (q, J = 7 Hz, 2H, CH₂); 7.58, 7.74 (t, J =8 Hz, 3H, Phenyl-H); 8.12 (d, J = 8 Hz, 2H, Phenyl-H). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 13.92$ (CH₃); 62.00 (CH₂); 109.95 (=C); 125.71, 128.91, 130.33, 135.95 (Phenyl-C); 152.39, 160.69, 174.64, 179.68 (C = O, = C - O). – MS: m/z (%) = 246 (6) [M⁺], 218 (13) [M⁺ – CO].

 $C_{13}H_{10}O_5$ (246.2) Ber. C 63.36 H 4.06 Gef. C 63.35 H 4.35

4-Ethoxycarbonyl-5-(4-methoxyphenyl)-2,3-dioxo-2,3-dihydrofuran (6m): Ausb. 3.23 g (78%), gelbe Kristalle, Schmp. 103 °C (aus Diethylether). – IR (KBr): $\tilde{v} = 1835 \text{ cm}^{-1}$, 1725, 1700 (C=O); 1600 (C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.40$ (t, J =7 Hz, 3H, CH₃); 4.00 (s, 3H, OCH₃); 4.33 (q, J = 7 Hz, 2H, CH₂); 7.10, 8.33 (d, J = 9 Hz, 2H, Phenyl-H). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 14.00$ (CH₃); 55.89 (OCH₃); 61.75 (OCH₂); 108.12 (=C); 114.71, 117.67, 133.65 (Phenyl-C); 153.23, 161.38, 166.48, 174.17, 178.65 (C=O, =C-O). – MS: m/z (%) = 276 (7) [M⁺], 248 (30) [M⁺ – CO].

C14H12O6 (276.2) Ber. C 60.83 H 4.34 Gef. C 60.50 H 4.40

5-(3,4-Dimethoxyphenyl)-4-ethoxycarbonyl-2,3-dioxo-2,3-dihydrofuran (6n): Ausb. 3.90 g (85%), oranges Pulver, Schmp. 131°C (aus Diethylether). – IR (KBr): $\tilde{v} = 1820 \text{ cm}^{-1}$, 1715, 1700 (C=O); 1590 (C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.39$ (t, J =7 Hz, 3H, CH₃); 3.95, 3.99 (s, 3H, OCH₃); 4.39 (q, J = 7 Hz, 2H, OCH₂); 7.03, 8.02 (d, J = 9 Hz, 1H; Phenyl-H); 7.90 (s, 1H, Phenyl-H). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 14.04$ (CH₃); 56.07, 56.39 (OCH₃); 61.82 (OCH₂); 108.38 (=C); 110.98, 112.70, 117.89, 126.91 (Phenyl-C); 149.03, 153.20, 156.50, 161.58, 174.16, 178.18 (C=O, =C-O). – MS: m/z (%) = 306 (4) [M⁺], 278 (42) [M⁺ – CO].

C15H14O7 (306.2) Ber. C 58.78 H 4.57 Gef. C 58.48 H 4.83

4-Ethoxycarbonyl-5-(3,4,5-trimethoxyphenyl)-2,3-dioxo-2,3-dihydrofuran (60): Ausb. 3.78 g (75%), rote Kristalle, Schmp. 117°C (aus Diethylether). – IR (KBr): $\tilde{v} = 1825 \text{ cm}^{-1}$, 1720, 1705 (C=O); 1570 (C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.39$ (t, J =7 Hz, 3H, CH₃); 3.93 (s, 6H, OCH₃); 4.05 (s, 3H, OCH₃); 4.39 (q, J = 7 Hz, 2H, OCH₂); 7.64 (s, 2H, Phenyl-H). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 14.08$ (CH₃); 56.36, 61.29 (OCH₃); 62.05 (OCH₂); 108.54, 109.30, 119.85 (=C, Phenyl-C); 145.79, 152.83, 161.47, 174.40, 178.11 (C=O, =C-O, zwei Signale fallen zufällig zusammen). – MS: m/z (%) = 336 (5) [M⁺], 308 (38) [M⁺ – CO].

C₁₆H₁₆O₈ (336.2) Ber. C 57.11 H 4.76 Gef. C 57.33 H 5.00

5-(4-Chlorphenyl)-4-ethoxycarbonyl-2,3-dioxo-2,3-dihydrofuran (6p): Ausb. 3.45 g (82%), dunkelgelbe Kristalle, Schmp. 58 °C [aus Diethylether/CHCl₃ (3:1)]. – IR (KBr): $\tilde{v} = 1790 \text{ cm}^{-1}$, 1750, 1690 (C=O); 1585 (C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.37$ (t, J = 7 Hz, 3H, CH₃); 4.38 (q, J = 7 Hz, 2H, OCH₂); 7.56, 8.13 (d, J = 9 Hz, 2H, Phenyl-H). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta =$ 14.00 (CH₃); 62.17 (OCH₂); 109.98 (=C); 124.15, 129.43, 131.78, 142.80 (Phenyl-C); 152.05, 160.65, 174.46, 178.70 (C=O, =C-O). – MS: m/z (%) = 280 (7) [M⁺], 252 (15) [M⁺ – CO].

C13H9ClO₅ (280.2) Ber. C 55.67 H 3.21 Gef. C 55.38 H 3.50

B) 4-Acyl-5-alkyliden-3-hydroxy-2(5H)-furanone 7. – Allgemeine Arbeitsweise: Zu einer Lösung von 50.0 mmol 5 in 50 ml **B** 2293

wasserfreiem Diethylether gibt man 1.2 g (12.5 mmol) Magnesiumchlorid und tropft unter heftigem Rühren innerhalb von 0.5 h eine Lösung von 4.4 ml (50.0 mmol) **2a** für **5a**, **b** bzw. 10.8 g (50.0 mmol) **2b** (für **5c**-e) in 25 ml trockenem *n*-Hexan zu. Nach 4 h Reaktionszeit bei 20 °C fügt man 25 ml *n*-Hexan zu, filtriert, engt das Volumen der Lösung auf 30% ein, isoliert die ausgefallenen Kristalle und kristallisiert aus Chloroform um.

(Z)-5-Ethyliden-3-hydroxy-4-propionyl-2(5H)-furanon (7a): Ausb. 6.90 g (76%), Schmp. 117 °C. – IR (KBr): $\tilde{v} = 1735 \text{ cm}^{-1}$, 1675, 1655 (C=O); 1635 (C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.19$ (t, J = 7 Hz, 3H, CH₃); 1.96 (d, J = 8 Hz, 3H, CH₃); 2.91 (q, J = 7 Hz, 2H, CH₂); 5.89 (q, J = 8 Hz, 1H, =CH); 10.05 (br. s, 1H, OH). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 7.01$, 11.64 (CH₃); 36.50 (CH₂); 110.51 (=CH); 117.70, 143.39, 149.81 (=C); 164.31, 198.92 (C=O). – MS: m/z (%) = 182 (35) [M⁺], 154 (60) [M⁺ – CO].

C₉H₁₀O₄ (182.1) Ber. C 59.35 H 5.53 Gef. C 58.96 H 5.47

(Z)-7a enthält <1% (E)-7a: ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.35$ (t, J = 7 Hz, 3H, CH₃); 2.04 (d, J = 8 Hz, 3H, CH₃); 3.21 (q, J = 7 Hz, 2H, CH₂); 6.26 (q, J = 8 Hz, 1H, =CH); 10.05 (br. s, 1H, OH).

3-Hydroxy-5-isopropyliden-4-(2-methylpropionyl)-2(5H)-furanon (7b): Ausb. 7.60 g (72%), Schmp. 94°C. – IR (KBr): $\tilde{v} =$ 1745 cm⁻¹, 1680 (C=O); 1645 (C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.21$ (d, J = 7 Hz, 6H, CH₃); 1.78 (s, 3H, CH₃); 2.00 (s, 3H, CH₃); 3.29 (sept, J = 7 Hz, 1H, CH); 8.52 (br. s, 1H, OH). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 17.41$ (2 CH₃); 19.20, 19.96 (CH₃); 41.45 (CH); 123.65, 123.83, 139.07, 142.27 (=C); 165.59, 203.28 (C=O). – MS: m/z (%) = 210 (26) [M⁺], 182 (41) [M⁺ – CO].

C₁₁H₁₄O₄ (210.2) Ber. C 62.86 H 6.72 Gef. C 62.51 H 6.79

(Z)-5-Ethyliden-3-hydroxy-4-(2-methylpropionyl)-2(5H)-furanon (7c): Ausb. 7.30 g (74%), Schmp. 115°C. – IR (KBr): $\tilde{v} =$ 1740 cm⁻¹, 1680, 1660 (C=O); 1635 (C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.20$ (d, J = 7 Hz, 6H, CH₃); 1.96 (d, J = 7 Hz, 3H, CH₃); 3.30 (sept, J = 7 Hz, 1H, CH); 5.96 (q, J = 7 Hz, 1H, =CH); 9.86 (br. s, 1H, OH). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 11.59$ (CH₃); 17.71 (2 CH₃); 39.71 (CH); 111.05 (=CH); 116.95, 143.47, 148.48 (C=C); 164.78, 201.91 (C=O). – MS: m/z (%) = 196 (18) [M⁺], 168 (47) [M⁺ – CO].

C10H12O4 (196.2) Ber. C 61.23 H 6.17 Gef. C 60.78 H 6.09

(Z)-5-Ethyliden-3-hydroxy-4-pivaloyl-2(5H)-furanon (7d): Ausb. 7.10 g (68%), Schmp. 132°C. – IR (KBr): $\tilde{v} = 1770 \text{ cm}^{-1}$, 1690, 1670 (C=O); 1650 (C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.23$ (s, 9H, CH₃); 2.00 (d, J = 7 Hz, 3H, CH₃); 5.35 (q, J = 7 Hz, 1H, = CH); OH-Signal nicht auffindbar. – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 12.14$ (CH₃); 25.80 (3 CH₃); 45.46 (C_q); 116.36 (=CH); 131.89, 139.16, 144.18 (=C); 160.06, 202.88 (C=O). – MS: m/z (%) = 210 (13) [M⁺], 182 (24) [M⁺ – CO].

C₁₁H₁₄O₄ (210.2) Ber. C 62.86 H 6.72 Gef. C 62.66 H 6.76

(Z)-7d enthält ca. 13% (E)-7d: ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.28$ (s, 9H, CH₃); 1.92 (d, J = 7 Hz, 3H, CH₃); 5.38 (q, J = 7 Hz, 1H, = CH).

(Z)-5-Ethyliden-3-hydroxy-4-(3-methylbutanoyl)-2(5H)-furanon (7e): Ausb. 8.20 g (78%), Schmp. 113°C. – IR (KBr): $\tilde{v} =$ 1740 cm⁻¹, 1680, 1655 (C=O); 1640 (C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.00$ (d, J = 7 Hz, 6H, CH₃); 1.96 (d, J = 8 Hz, 3H, CH₃); 2.26 (m, J = 7 Hz, 1H, CH); 2.76 (d, J = 7 Hz, 2H, CH₂); 5.93 (q, J = 8 Hz, 1H, =CH); 9.95 (br. s, 1H, OH). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 11.64$ (CH₃); 22.54 (2 CH₃); 24.24 (CH); 51.66 (CH₂); 110.80 (=CH); 117.91, 143.44, 149.21 (=C); 164.61, 197.97 (C=O). – MS: m/z (%) = 210 (33) [M⁺], 182 (45) [M⁺ – CO].

C11H14O4 (210.2) Ber. C 62.86 H 6.72 Gef. C 62.49 H 6.71

(Z)-3-Hydroxy-4-methoxycarbonyl-5-(2-methylpropyliden)-2(5H)-furanon (7f): Zu einer Lösung von 15 mmol 5f in 50 ml Diethylether gibt man 1.00 g (10.5 mmol) Magnesiumchlorid, tropft eine Lösung von 1.31 ml (15 mmol) **2a** in 10 ml Diethylether zu, rührt 2 h bei 20°C, filtriert, entfernt das Lösungsmittel im Rotationsverdampfer und reinigt den Rückstand durch Kristallisation aus Diethylether/n-Hexan (4:1). – Ausb. 2.70 g (85%), farblose Nadeln, Schmp. 87°C. – IR (KBr): $\tilde{v} = 3300 \text{ cm}^{-1}$ (OH); 1790, 1695 (C=O); 1635 (C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta =$ 1.09 (d, J = 7 Hz, 6H, 2 CH₃); 3.03 (m_c, 1H, CH); 4.00 (s, 3H, OCH₃); 5.63 (d, 1H, =CH); 9.09 (br. s, 1H, OH). – ¹³C-NMR (100.5 MHz, CDCl₃): $\delta = 22.63$ (2 CH₃); 28.85 (CH); 52.77 (OCH₃); 111.87, 139.67, 151.49 (=C); 121.28 (=CH); 162.14, 164.58 (C=O). – MS: m/z (%) = 212 (32) [M⁺], 180 (32) [M⁺ – MeOH].

C₁₀H₁₂O₅ (212.1) Ber. C 56.60 H 5.66 Gef. C 56.48 H 5.70

C) 2,3-Dioxo-2,3-dihydrofurane 9, 15, 17, 2,3-Dioxo-2,3-dihydrofuran-hydrochloride 10, 3-Hydroxy-5-imino-2(5H)-furanone 12, 21 und 3-Hydroxy-5-methyliden-2(5H)-furanon 18. – Allgemeine Arbeitsweise: Zu einer siedenden Lösung von 10 mmol 8 bzw. 13/14/ 19 in 100 ml wasserfreiem Diethylether tropft man unter Rühren 1.31 ml (15 mmol) 2a in 20 ml wasserfreiem Diethylether, rührt 3 h unter Rückfluß, kühlt auf 0°C, filtriert das ausgefallene Produkt ab und wäscht dieses mit eiskaltem Diethylether, dann mit *n*-Hexan. Abweichungen hiervon siche konkrete Beispiele.

5-(*N*,*N*-Diphenylamino)-4-(*N*,*N*-diphenylcarbamoyl)-2,3-dioxo-2,3-dihydrofuran (**9a**): 100 ml Dichlormethan, 0°C, 16 h bei 20°C. Das Produkt wird nach Einengen der Reaktionslösung auf 50 ml durch Überschichten mit Diethylether bei -18 °C auskristallisiert. – Ausb. 4.00 g (87%), gelbe Nadeln, Schmp. 126 °C (Zers.) (aus Chloroform). – IR (KBr): $\tilde{v} = 1840$ cm⁻¹, 1710, 1655, 1600 (C=O bzw. C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 6.57 - 7.43$ (m, 20 H, Phenyl-H). – ¹³C-NMR (400 MHz, CDCl₃): $\delta = 99.39$ (=C); 126.53, 127.38, 128.90, 129.72, 140.01, 141.83 (6 Signale für 16 Phenyl-C); 155.26, 160.41, 165.51, 170.25 (C=O, =C-O). – MS: *m/z* (%) = 460 (2) [M⁺], 432 (7) [M⁺ – CO].

 $\begin{array}{rl} C_{29}H_{20}N_2O_4 \ (460.5) & \mbox{Ber. C 75.64 } H \ 4.38 \ N \ 6.08 \\ & \mbox{Gcf. C 75.26 } H \ 4.53 \ N \ 6.13 \end{array}$

5-(*N*-Methylanilino)-4-(*N*-methyl-*N*-phenylcarbamoyl)-2,3dioxo-2,3-dihydrofuran (9b): Ausb. 2.96 g (88%), gelbe Kristalle, Schmp. 116°C (Zers.) (aus Aceton). – IR (KBr): $\tilde{v} = 1860 \text{ cm}^{-1}$, 1840, 1650, 1620 (C=O bzw. C=C). – ¹H-NMR (400 MHz, CDCl₃, -57°C, 4 Rotamere): $\delta = 2.26$, 2.84, 3.26, 3.38, 3.48, 3.61, 3.72, 3.79 (s, 3H, NCH₃); 6.78-7.70 (m, 10H, Phenyl-H). – ¹³C-NMR (400 MHz, CDCl₃, 20°C, 2 Rotamere): $\delta = 37.05$, 38.70, 40.95, 41.40 (NCH₃); 95.81, 97.55 (=C); 124.95-142.90 (Phenyl-C); 155.64, 156.27, 160.61, 161.01, 167.41, 168.13, 169.30 (C=O, =C-O, 2 Signale fallen zufällig zusammen). – MS: *m/z* (%) = 336 (4) [M⁺], 308 (10) [M⁺ – CO].

5-(*N*,*N*-Diethylamino)-4-(*N*,*N*-diethylcarbamoyl)-2,3-dioxo-2,3dihydrofuran-hydrochlorid (**10a**): Ausb. 2.6 g (85%), farblose Kristalle, Schmp. 74°C (aus Chloroform). – IR (KBr): $\tilde{v} = 1840 \text{ cm}^{-1}$, 1700, 1600 (C=O bzw. C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.32$, 1.49 (2 t, eng beieinander liegend, J = 7 Hz, 6H, CH₃); 3.60 (q, J = 7 Hz, 4H, NCH₂); 3.90, 4.47 (q, J = 7 Hz, 2H, NCH₂); 14.91 (br. s, 1H, OH). – ¹³C-NMR (400 MHz, CDCl₃): $\delta = 11.28$, 11.61, 12.70, 12.79 (CH₃); 42.01, 44.93, 45.14, 45.70 (NCH₃); 88.55 (=C); 154.94, 163.41, 165.51, 165.89 (C=O, =C-O). - MS: m/z (%) = 268 (3) [M⁺ - HCl], 240 (3) [M⁺ - HCl - CO]. $C_{13}H_{21}ClN_2O_4$ (304.8) Ber. C 51.21 H 6.94 N 9.19 Gef. C 51.89 H 6.86 N 9.09

5-(N,N-Diisopropylamino)-4-(N,N-diisopropylcarbamoyl)-2,3dioxo-2,3-dihydrofuran-hydrochlorid (10b): Ausb. 3.64 g (93%), farblose Nadeln, Schmp. 129 °C (aus Chloroform, mit *n*-Hexan überschichtet). – IR (KBr): $\tilde{v} = 1850 \text{ cm}^{-1}$, 1750, 1710, 1610 (C=O bzw. C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.22-1.68$ (8 Diastereomere, teilweise zusammenfallende d, J = 7 Hz, 24 H, CH₃); 3.73, 3.80, 3.89, 4.31 (sept, J = 7 Hz, 1H, CH); 14.14 (br. s, 1H, OH). – ¹³C-NMR (400 MHz, CDCl₃): $\delta = 17.87$, 19.20, 19.60, 19.70, 20.11, 20.46, 21.19, 22.48 (CH₃); 49.92, 51.24, 53.58, 54.51 (CH); 91.21 (=C); 155.34, 165.20, 165.34, 167.29 (C=O, =C-O). – MS: m/z (%) = 324 (4) [M⁺ – HCl], 100 (100) [{(CH₃)₂CH₂N⁺]. C₁₇H₂₉ClN₂O₄ (360.9) Ber. C 56.57 H 8.10 N 7.76

Gef. C 56.89 H 7.36 N 7.78

3-Hydroxy-4-(N-phenylcarbamoyl)-5-(N-phenylimino)-2(5H)furanon (12a): 150 ml Acetonitril, 50 °C. Das Produkt wird nach Einengen der Reaktionslösung auf 50 ml durch Überschichten mit Diethylether bei -18 °C auskristallisiert. – Ausb. 2.50 g (81%), gelbe Kristalle, Schmp. 142 °C (Zers.) (aus Chloroform). – IR (KBr): $\tilde{v} = 1780 \text{ cm}^{-1}$, 1710, 1655, 1595 (C=O bzw. C=C). – ¹H-NMR (400 MHz, [D₆]DMSO): $\delta = 6.97 - 7.63$ (m, 10 H, Phenyl-H); 8.65 (br. s, 1 H, NH); 10.29 (br. s, 1 H, OH). – ¹³C-NMR (400 MHz, [D₆]DMSO): $\delta = 93.46$ (=C); 119.13, 122.64, 126.98, 128.66, 128.86, 128.94, 132.41, 139.41 (Phenyl-C); 161.02, 164.70, 170.10, 171.38 (C=O, C=N, =C-OH). – MS: m/z (%) = 308 (32) [M⁺], 280 (4) [M⁺ – CO].

4-(*N*-Benzylcarbamoyl)-(5-*N*-benzylimino)-3-hydroxy-2(5H)furanon (12b): Ausb. 2.79 g (83%), farbloses Pulver, Schmp. 151 °C (aus Chloroform, mit *n*-Hexan überschichtet). – IR (KBr): $\tilde{v} =$ 1760 cm⁻¹, 1690, 1640 (C=O bzw. C=C). – ¹H-NMR (400 MHz, [D₆]DMSO): $\delta =$ 4.45, 4.57 (s, 2H, NCH₂); 7.22–7.33 (m, 10H, Phenyl-H); 8.20 (br. s, 1H, NH); 8.31 (br. s, 1H, OH). – ¹³C-NMR (400 MHz, [D₆]DMSO): $\delta =$ 40.08, 42.55 (NCH₂); 90.34 (=C); 127.14, 127.28, 128.48, 128.53, 137.14, 138.56 (6 Signale für 8 Phenyl-C); 163.13, 164.53, 170.47, 172.56 (C=O, C=N, =C-OH). – MS: m/z (%) = 336 (29) [M⁺], 106 (100) [PhCH₂NH⁺].

 $\begin{array}{c} C_{19}H_{16}N_2O_4 \ (336.3) \\ \text{Gef. C } 67.85 \ H \ 4.80 \ N \ 8.33 \\ \text{Gef. C } 67.08 \ H \ 4.86 \ N \ 8.51 \end{array}$

4-Acetyl-5-(N,N-diphenylamino)-2,3-dioxo-2,3-dihydrofuran (15): 9.96 ml (11 mmol) **2a** bei 0°C zutropfen, 1 h bei 0°C, 2 h bei 20°C. – Ausb. 2.46 g (80%), gelbe Kristalle, Schmp. 104°C (Zers.) (aus Dichlormethan, mit *n*-Hexan überschichtet). – IR (KBr): $\tilde{v} =$ 1820 cm⁻¹, 1730, 1645, 1610 (C=O bzw. C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.53$ (s, 3 H, CH₃); 7.25 (s, 10 H, Phenyl-H). – ¹³C-NMR (400 MHz, CDCl₃): $\delta =$ 16.28 (CH₃); 117.18 (=C); 129.17, 141.50 (2 Signale für 8 Phenyl-C); 152.22, 160.39, 172.39, 186.05 (C=O, =C-O). – MS: *m/z* (%) = 307 (17) [M⁺], 279 (33) [M⁺ – CO].

 $C_{18}H_{13}NO_4$ (307.3) Ber. C 70.35 H 4.26 N 4.56 Gef. C 70.01 H 4.12 N 4.67

4-(*N*,*N*-*Dibenzylcarbamoyl*)-5-*phenyl*-2,3-*dioxo*-2,3-*dihydrofuran* (17): Ausb. 3.66 g (92%), gelbe Kristalle, Schmp. 154 °C (Zers.) (aus Chloroform). – IR (KBr): $\tilde{v} = 1825 \text{ cm}^{-1}$, 1725, 1625, 1600 (C=O bzw. C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 4.31$, 4.68 (s, 2H, NCH₂); 7.04–7.87 (m, 15H, Phenyl-H). – ¹³C-NMR (400 MHz, $[D_6]DMSO$: $\delta = 46.65$, 50.92 (NCH₂); 113.12 (=C); 126.16– 129.48 (12 Signale für 12 Phenyl-C); 154.12, 161.98, 170.84, 176.81 (C=O, =C-O). – MS: m/z (%) = 397 (9) [M⁺], 196 (100) [(PhCH₂)₂N⁺].

4-(*N*,*N*-*Dibenzylcarbamoyl*)-3-hydroxy-5-methyliden-2(5H)-furanon (18): Das Produkt wird nach Einengen der Reaktionslösung auf 30 ml durch Überschichten mit *n*-Hexan bei −18 °C auskristallisiert. – Ausb. 2.25 g (67%), farblose Kristalle, Schmp. 58 °C (Zers.) (aus Chloroform, mit *n*-Hexan überschichtet). – IR (KBr): $\tilde{v} = 1800 \text{ cm}^{-1}$, 1780, 1650, 1630 (C=O bzw.C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 4.39$, 4.67 (s, 2H, NCH₂); 5.17, 5.48 (je d, J = 3 Hz, 1 H, =CH₂); 7.10–7.38 (m, 10H, Phenyl-H); OH-Signal nicht auffindbar. – ¹³C-NMR (400 MHz, CDCl₃): $\delta = 47.36$, 51.03 (NCH₂); 101.21 (=CH₂); 126.97 – 135.26 (8 Signale für 8 Phenyl-C); 134.21, 148.45, 149.37, 159.45, 159.80 (C=O, =C-O). – MS: m/z (%) 335 (11) [M⁺], 196 (33) [(PhCH₂)₂N⁺].

4-Benzoyl-3-hydroxy-5-(N-phenylimino)-2(5H)-furanon (21a): Ausb. 2.67 g (91%), gelbe Kristalle, Schmp. 162°C (Zers.) (aus Dichlormethan, mit Diethylether überschichtet). – IR (KBr): $\tilde{v} =$ 1775 cm⁻¹, 1735, 1650, 1600 (C=O bzw. C=C). – ¹H-NMR (400 MHz, [D₆]DMSO): $\delta =$ 7.34–7.72 (m, 10H, Phenyl-H); 8.67 (br. s, 1H, OH). – ¹³C-NMR (400 MHz, [D₆]DMSO): $\delta =$ 101.42 (=C); 127.08, 127.71, 128.05, 128.60, 128.83, 132.12, 132.29, 137.28 (Phenyl-C); 163.76, 169.19, 170.81, 184.92 (C=O, =C-O). – MS: m/z (%) = 293 (17) [M⁺], 265 (23) [M⁺ – CO].

 $\begin{array}{c} C_{17}H_{11}NO_4 \ (293.3) \\ Gef. \ C \ 69.62 \ H \ 3.78 \ N \ 4.78 \\ Gef. \ C \ 69.34 \ H \ 3.76 \ N \ 4.71 \end{array}$

4-Benzoyl-5-(N-benzylimino)-3-hydroxy-2(5H)-furanon (21b): Das Produkt wird nach Einengen der Reaktionslösung auf 30 ml durch Überschichten mit *n*-Hexan bei -18 °C auskristallisiert. – Ausb. 1.90 g (62%), gelbe Kristalle, Schmp. 96 °C (aus Chloroform, mit *n*-Hexan überschichtet). – IR (KBr): $\tilde{v} = 1780$ cm⁻¹, 1725, 1670, 1590 (C=O bzw. C=C). – ¹H-NMR (400 MHz, CDCl₃): $\delta = 4.85$ (s, 2H, NCH₂); 7.25–8.18 (m, 10H, Phenyl-H); 13.88 (br. s, 1H, OH). – ¹³C-NMR (400 MHz, CDCl₃): $\delta = 41.94$ (NCH₂); 98.76 (=C); 127.56–134.89 (Phenyl-C); 160.96, 175.12, 176.39, 179.98 (C=O, N=C, =C-OH). - MS: m/z (%) = 307 (17) [M⁺], 279 (5) [M⁺ - CO].

 $\begin{array}{c} C_{18}H_{13}NO_4 \ (307.3) & \mbox{Ber. C } 70.35 \ \mbox{H} \ 4.26 \ \ N \ 4.56 \\ & \mbox{Gef. C } 69.34 \ \ \mbox{H} \ 4.35 \ \ N \ 4.71 \end{array}$

CAS-Registry-Nummern

2a: 79-37-8 / 2b: 15219-34-8 / 5a: 7424-54-6 / 5b: 18362-64-6 / 5c: 7424-53-5 / 5d: 20734-29-6 / 5e: 21890-66-4 / 5f: 30414-55-2 / 5g: 614-27-7 / 5h: 22027-50-5 / 5i: 22027-53-8 / 5j: 134568-16-4 / 5k: 54177-02-5 / 5l: 94-02-0 / 5m: 2881-83-6 / 5n: 4687-37-0 / 5o: 3044-56-2 / 5p: 2881-63-2 / 6g: 134567-87-6 / 6h: 134567-88-7 / 6i: 134567-93-4 / 6n: 134567-91-2 / 6l: 134567-92-3 / 6m: 134567-93-4 / 6n: 134567-94-5 / 6o: 134567-95-6 / 6p: 134567-96-7 / (Z)-7a: 134567-97-8 / (E)-7a: 134568-01-7 / (E)-7d: 134568-05-7 / 134568-02-8 / (Z)-7e: 134568-03-9 / (Z)-7f: 134568-01-7 / (E)-7d: 134568-04-0 / 8a: 106993-46-8 / 8b: 36949-57-2 / 8c: 33931-42-9 / 8d: 16463-67-5 / 8e: 621-10-3 / 8f: 10255-99-9 / 9a: 134568-05-1 / 9b: 134568-06-2 / 10a: 134568-07-3 / 10b: 134568-08-4 / 12a: 134568-06-5 / 12b: 134568-10-3 / 3(R² = Ph): 2540-31-0 / 13(R² = CH₂Ph): 61845-91-8 / 14(R² = CH₂Ph): 54568-57-9 / 15: 134568-11-9 / 17: 134568-12-0 / 18: 134568-13-1 / 19a: 959-66-0 / 19b: 10229-22-8 / 21a: 134568-14-2 / 21b: 134568-15-3

- ²⁾ R. W. Saalfrank, A. Stark, M. Bremer, H.-U. Hummel, Angew. Chem. **102** (1990) 292; Angew. Chem. Int. Ed. Engl. **29** (1990) 311; R. W. Saalfrank, A. Stark, K. Peters, H. G. von Schnering; Angew. Chem. **100** (1988) 878; Angew. Chem. Int. Ed. Engl. **27** (1988) 851.
- ³⁾ E. Ziegler, G. Kollenz, H. Igel, Monatsh. Chem. 102 (1971) 1769.
 ⁴⁾ Eine allgemeine Diskussion zur Aciditätssteigerung durch Metall-Komplexierung findet man bei R. P. Houghton, Metal Complexes in Organic Chemistry, S. 114-116, Cambridge University Press, Cambridge 1979; vgl. hierzu auch: M. W. Rathke, P. J. Cowan, J. Org. Chem. 50 (1985) 2622; M. W. Rathke, M. A. Nowak, Synth. Commun. 15 (1985) 1039; J. Skarzewski, Tetahedron 45 (1989) 4593; S. Shambayati, W. E. Crowe, S. L. Schreiber, Angew. Chem. 102 (1990) 273; Angew. Chem. Int. Ed. Engl. 29 (1990) 256.
- ⁵⁾ S. Murai, K. Hasegawa, N. Sonoda, Angew. Chem. 87 (1975) 668; Angew. Chem. Int. Ed. Engl. 14 (1975) 636; H. Alper, G. Vasapollo, Tetrahedron Lett. 30 (1989) 2617.
- ⁶⁾ Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55168, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[109/91]

¹⁾ 1. Mitteilung: R. W. Saalfrank, T. Lutz, Angew. Chem. **102** (1990) 1064; Angew. Chem. Int. Ed. Engl. **29** (1990) 1041.